Mo $K\alpha$ radiation

 $0.20 \times 0.15 \times 0.12$ mm

9353 measured reflections 6138 independent reflections

4642 reflections with $I > 2\sigma(I)$

 $\mu = 0.45 \text{ mm}^-$

T = 290 K

 $R_{\rm int}=0.032$

Z = 2

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aqua(4-fluorobenzoato- κ O)bis(1,10phenanthroline- $\kappa^2 N, N'$)manganese(II) 4-fluorobenzoate trihydrate

Yun-Xia Li,^a Bi-Song Zhang,^a* Chang-Sheng Wu,^a Miao Zheng^b and Jian-Li Lin^b

^aCollege of Pharmaceutics and Material Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321007, People's Republic of China, and ^bState Key Laboratory Base of Novel Functional Materials and Preparation, Science Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China

Correspondence e-mail: zbs_jy@163.com

Received 22 September 2011; accepted 22 November 2011

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.008 Å; R factor = 0.085; wR factor = 0.178; data-to-parameter ratio = 12.8.

In the title compound, $[Mn(C_7H_4FO_2)(C_{12}H_8N_2)_2(H_2O)]$ - $(C_7H_4FO_2)\cdot 3H_2O$, the Mn^{II} atom is coordinated by four N atoms from two chelating 1,10-phenanthroline ligands and two O atoms from one monodentate 4-fluorobenzoate ion and one water molecule, forming a distorted octahedral geometry. In the crystal, the three components are assembled into a tape structure along the *a* axis by $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds. Between the tapes, a π - π interaction with a centroid–centroid distance of 3.569 (3) Å and a weak C– $H\cdots$ F hydrogen bond are observed.

Related literature

For applications of manganese complexes, see: Sehlotho & Durmus (2008). For related manganese(II) complexes with 1,10-phenanthroline ligands, see: Su *et al.* (2005); Zhang (2004).

Experimental

Crystal data $[Mn(C_7H_4FO_2)(C_{12}H_8N_2)_2(H_2O)]$ - $(C_7H_4FO_2) \cdot 3H_2O$ $M_e = 765.62$

Triclinic, $P\overline{1}$ a = 8.8897 (17) Åb = 14.773 (3) Å c = 14.890 (3) Å $\alpha = 107.815 (4)^{\circ}$ $\beta = 107.314 (4)^{\circ}$ $\gamma = 91.386 (4)^{\circ}$ $V = 1762.9 (6) \text{ Å}^{3}$

Data collection

Bruker SMART APEX CCD	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2000)	
$T_{\rm min} = 0.923, T_{\rm max} = 0.948$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.085 & 478 \text{ parameters} \\ wR(F^2) &= 0.178 & H\text{-atom parameters constrained} \\ S &= 1.14 & \Delta\rho_{\text{max}} &= 0.38 \text{ e} \text{ Å}^{-3} \\ 6138 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.26 \text{ e} \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O5-H5A\cdots O3^{i}$	0.85	1.79	2.622 (4)	166
$O5-H5B\cdots O2$	0.85	2.06	2.719 (5)	135
$O6-H6A\cdots O4^{ii}$	0.85	1.98	2.825 (6)	171
$O6-H6B\cdots O7^{iii}$	0.85	2.08	2.827 (7)	146
$O7 - H7A \cdots O8$	0.85	2.02	2.854 (8)	165
$O7 - H7B \cdots O6$	0.85	1.99	2.819 (6)	166
$O8-H8A\cdots O4$	0.85	1.97	2.792 (7)	164
$C1-H1\cdots F2^{iv}$	0.93	2.50	3.209 (7)	133
$C5-H5\cdots O3^{v}$	0.93	2.45	3.339 (7)	160
$C20-H20\cdots O4^{i}$	0.93	2.42	3.233 (7)	146

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z; (iii) -x + 2, -y, -z; (iv) -x, -y + 1, -z; (v) x - 1, y, z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Brandenburg & Putz, 1999); software used to prepare material for publication: *SHELXL97*.

The authors gratefully acknowledge financial support by the Department of Education of Zhejiang Province (grant No. Y201120940) and the Scientific Research Fund of Ningbo University (grant No. XKL09078).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2782).

References

- Brandenburg, K. & Putz, H. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sehlotho, N. & Durmus, M. (2008). Inorg. Chem. Commun. 11, 479-483.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Su, J.-R., Zhang, L. & Xu, D.-J. (2005). Acta Cryst. E61, m939-m941.
- Zhang, B. S. (2004). Z. Kristallogr. New Cryst. Struct. 219, 485-486.

Acta Cryst. (2011). E67, m1853 [doi:10.1107/S1600536811049968]

Aqua(4-fluorobenzoato- κO)bis(1,10-phenanthroline- $\kappa^2 N$,N')manganese(II) 4-fluorobenzoate trihydrate

Y.-X. Li, B.-S. Zhang, C.-S. Wu, M. Zheng and J.-L. Lin

Comment

Potential applications of manganese complexes have been reflected in catalysis, molecular magnets, materials, biology, electrochemical properties, *etc* (Sehlotho & Durmus, 2008). In this paper, we report synthesis and structure of a new manganese coordination complex with 4-fluorobenzoic acid, 1,10-phenanthroline and water ligands. The crystal structure of title compound is similar to the reported structures (Su *et al.*, 2005; Zhang, 2004). In the complex molecule, the Mn^{II} atom is coordinated by four N atoms from two phen ligands, two O atoms respectively from one 4-fluorobenzoate ion and one water molecule to form a distorted MnN₄O₂ octahedral geometry. The equatorial positions of the Mn^{II} ion are occupied by one carboxylate O atom from the 4-fluorobenzoate ion and three N atoms from different phen molecules, and the axial ones by the other N atom from one phen ligand and one carboxylate O atom from one water molecule. The Mn1—N bond length is 2.245 (4) to 2.338 (4) Å, and Mn1—O bond lengths are 2.100 (3) and 2.126 (3) Å (Fig. 1). In the crystal structure, a tape structure of the three components along the *a* direction is formed by O—H…O and C—H…O hydrogen bonds (Table 1 and Fig. 2). A π - π stacking interaction between two adjacent phen ligands, with an interplanar distance of 3.389 (2) Å and a centroid-centroid distance of 3.569 (3) Å, and a weak C—H…F interaction are observed between the tapes.

Experimental

MnCl₂.2H₂O (0.081 g, 0.50 mmol) was dissolved in appropriate amount of water, and then 1M Na₂CO₃ solution was added. MnCO₃ was obtained by filtration, which was then washed with distilled water for 5 times. The freshly prepared MnCO₃, 4-fluorobenzoic acid (0.070 g, 0.50 mmol), phen.H₂O (0.099 g, 0.50 mmol), CH₃OH/H₂O (v/v = 1:2, 15 ml) were mixed and stirred for 6 h. Subsequently, the resulting cream suspension was heated in a 23 ml Teflon-lined stainless steel autoclave at 453 K for ca. 260 h. After the autoclave was cooled to room temperature, the solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and slow evaporation for a week afforded yellow bulk single crystals.

Refinement

C-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and were refined using the riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms attached to O atoms were found in a difference Fourier map and were refined using a riding model, with the O—H distances fixed as initially found, and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The three-dimensional supramolecular network of the title complex. Hydrogen bonds are drawn as dashed lines. H atoms not involved in the hydrogen bonds have been omitted.

Aqua(4-fluorobenzoato- κO)bis(1,10-phenanthroline- $\kappa^2 N$, N')manganese(II) 4-fluorobenzoate trihydrate

Crystal data

$[Mn(C_7H_4FO_2)(C_{12}H_8N_2)_2(H_2O)](C_7H_4FO_2)\cdot 3H_2O$	Z = 2
$M_r = 765.62$	F(000) = 790
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.442 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.8897 (17) Å	Cell parameters from 6392 reflections
b = 14.773 (3) Å	$\theta = 1.7 - 25.0^{\circ}$
c = 14.890 (3) Å	$\mu = 0.45 \text{ mm}^{-1}$
$\alpha = 107.815 \ (4)^{\circ}$	T = 290 K
$\beta = 107.314 \ (4)^{\circ}$	Block, yellow
$\gamma = 91.386 \ (4)^{\circ}$	$0.20\times0.15\times0.12~mm$
$V = 1762.9 (6) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD diffractometer	6138 independent reflections
Radiation source: fine-focus sealed tube	4642 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.032$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 1.7^{\circ}$
φ and ω scans	$h = -10 \rightarrow 8$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$k = -16 \rightarrow 17$
$T_{\min} = 0.923, T_{\max} = 0.948$	$l = -17 \rightarrow 17$
9353 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.085$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.178$	H-atom parameters constrained
<i>S</i> = 1.14	$w = 1/[\sigma^2(F_o^2) + (0.0644P)^2 + 0.7608P]$ where $P = (F_o^2 + 2F_c^2)/3$
6138 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
478 parameters	$\Delta \rho_{\text{max}} = 0.38 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	otropic	or ed	auivalent	isotror	oic dis	placement	parameters	$(\AA^2$)
1		000.000000		011.0010	0. 00	100000000000000000000000000000000000000	1001.00		p		(/

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Mn1	0.21473 (8)	0.73431 (5)	0.44141 (5)	0.0408 (2)
N1	0.0199 (4)	0.6106 (3)	0.3641 (3)	0.0436 (9)
N2	0.1238 (4)	0.7091 (2)	0.5605 (3)	0.0412 (9)
N3	0.3123 (4)	0.8885 (3)	0.5313 (3)	0.0483 (10)
N4	0.0374 (5)	0.8306 (3)	0.3773 (3)	0.0491 (10)
01	0.2786 (4)	0.7154 (3)	0.3125 (2)	0.0580 (9)
O2	0.4787 (6)	0.6302 (3)	0.3210 (3)	0.1050 (16)
O3	0.4419 (4)	0.3208 (3)	0.3175 (2)	0.0703 (10)
O4	0.3937 (4)	0.1706 (3)	0.2153 (3)	0.0715 (10)
05	0.4333 (4)	0.6861 (3)	0.5018 (2)	0.0717 (11)
H5A	0.4864	0.6905	0.5611	0.107*
H5B	0.4985	0.6815	0.4693	0.107*
O6	0.8404 (5)	-0.0093 (3)	-0.1362 (3)	0.1048 (15)
H6A	0.7712	-0.0585	-0.1659	0.157*
H6B	0.9319	-0.0227	-0.1386	0.157*
O7	0.8483 (6)	0.0538 (3)	0.0642 (3)	0.1200 (17)
H7A	0.7639	0.0614	0.0799	0.180*
H7B	0.8283	0.0331	0.0015	0.180*
08	0.5651 (6)	0.0442 (4)	0.1157 (4)	0.140 (2)
H8A	0.5085	0.0864	0.1360	0.211*
H8B	0.5529	-0.0061	0.1304	0.211*
F1	0.4141 (4)	0.7201 (3)	-0.0743 (2)	0.1016 (12)
F2	0.0334 (5)	0.3861 (3)	-0.0739 (3)	0.1139 (14)
C1	-0.0280 (6)	0.5602 (3)	0.2679 (4)	0.0549 (13)

H1	0.0316	0.5697	0.2290	0.066*
C2	-0.1629 (6)	0.4939 (4)	0.2231 (4)	0.0626 (14)
H2	-0.1940	0.4610	0.1551	0.075*
C3	-0.2494 (6)	0.4769 (3)	0.2781 (4)	0.0609 (14)
Н3	-0.3395	0.4318	0.2481	0.073*
C4	-0.2039 (5)	0.5272 (3)	0.3804 (4)	0.0480 (12)
C5	-0.2856 (6)	0.5127 (4)	0.4450 (4)	0.0603 (14)
H5	-0.3770	0.4687	0.4188	0.072*
C6	-0.2330 (6)	0.5614 (4)	0.5425 (4)	0.0596 (14)
Н6	-0.2890	0.5507	0.5829	0.071*
C7	-0.0926 (5)	0.6297 (3)	0.5865 (4)	0.0465 (11)
C8	-0.0295 (6)	0.6806 (4)	0.6890 (4)	0.0578 (14)
H8	-0.0818	0.6729	0.7323	0.069*
C9	0.1071 (7)	0.7407 (4)	0.7244 (4)	0.0600 (14)
Н9	0.1516	0.7730	0.7923	0.072*
C10	0.1804 (6)	0.7539 (3)	0.6585 (3)	0.0526 (12)
H10	0.2739	0.7960	0.6839	0.063*
C11	-0.0099 (5)	0.6471 (3)	0.5256 (3)	0.0402 (10)
C12	-0.0656 (5)	0.5940 (3)	0.4209 (3)	0.0393 (10)
C13	0.3921 (5)	0.6878 (3)	0.1850 (3)	0.0433 (11)
C14	0.3068 (6)	0.7495 (3)	0.1460 (3)	0.0549 (13)
H14	0.2419	0.7841	0.1789	0.066*
C15	0.3127 (6)	0.7629 (4)	0.0591 (4)	0.0673 (15)
H15	0.2543	0.8059	0.0336	0.081*
C16	0.4077 (7)	0.7102 (4)	0.0129 (4)	0.0649 (15)
C17	0.4943 (7)	0.6478 (4)	0.0472 (4)	0.0727 (16)
H17	0.5569	0.6127	0.0125	0.087*
C18	0.4889 (6)	0.6365 (4)	0.1358 (4)	0.0655 (15)
H18	0.5500	0.5946	0.1617	0.079*
C19	0.3842 (6)	0.6751 (3)	0.2804 (3)	0.0499 (12)
C20	0.4439 (6)	0.9168 (4)	0.6097 (4)	0.0598 (14)
H20	0.4912	0.8711	0.6361	0.072*
C21	0.5130(7)	1.0104 (4)	0.6534 (4)	0.0674 (15)
H21	0.6019	1.0276	0.7101	0.081*
C22	0.4513 (7)	1.0775 (4)	0.6136 (4)	0.0737 (17)
H22	0.5005	1.1405	0.6409	0.088*
C23	0.3127 (7)	1.0518 (4)	0.5310 (4)	0.0599 (14)
C24	0.2387 (8)	1.1156 (4)	0.4826 (5)	0.0799 (18)
H24	0.2836	1.1793	0.5065	0.096*
C25	0.1081 (9)	1.0878 (4)	0.4048 (5)	0.0797 (18)
H25	0.0650	1.1320	0.3746	0.096*
C26	0.0309 (7)	0.9910 (4)	0.3656 (4)	0.0619 (14)
C27	-0.1097 (8)	0.9586 (5)	0.2863 (4)	0.0785 (18)
H27	-0.1585	1.0003	0.2543	0.094*
C28	-0.1755 (7)	0.8665 (5)	0.2557 (4)	0.0795 (18)
H28	-0.2714	0.8447	0.2042	0.095*
C29	-0.0970 (6)	0.8045 (4)	0.3028 (4)	0.0669 (15)
H29	-0.1424	0.7409	0.2803	0.080*
C30	0.1009 (6)	0.9242 (3)	0.4099 (3)	0.0471 (12)
	× /	× /	× /	

C31	0.2448 (6)	0.9546 (3)	0.4926 (3)	0.0472 (12)
C32	0.2864 (5)	0.2925 (3)	0.1510 (3)	0.0452 (11)
C33	0.2816 (5)	0.3889 (4)	0.1659 (3)	0.0501 (12)
H33	0.3369	0.4330	0.2279	0.060*
C34	0.1962 (6)	0.4213 (4)	0.0906 (4)	0.0611 (14)
H34	0.1937	0.4865	0.1007	0.073*
C35	0.1162 (7)	0.3552 (5)	0.0016 (4)	0.0698 (16)
C36	0.1153 (7)	0.2590 (5)	-0.0166 (4)	0.0738 (17)
H36	0.0571	0.2157	-0.0784	0.089*
C37	0.2029 (6)	0.2273 (4)	0.0589 (3)	0.0585 (13)
H37	0.2057	0.1620	0.0478	0.070*
C38	0.3824 (6)	0.2584 (4)	0.2351 (4)	0.0524 (12)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0408 (4)	0.0452 (4)	0.0389 (4)	0.0043 (3)	0.0097 (3)	0.0202 (3)
N1	0.047 (2)	0.046 (2)	0.036 (2)	0.0069 (18)	0.0086 (18)	0.0159 (18)
N2	0.041 (2)	0.042 (2)	0.040 (2)	0.0063 (17)	0.0106 (18)	0.0159 (17)
N3	0.049 (2)	0.051 (2)	0.045 (2)	0.0000 (19)	0.013 (2)	0.0194 (19)
N4	0.051 (2)	0.055 (3)	0.040 (2)	0.0133 (19)	0.009 (2)	0.0176 (19)
01	0.052 (2)	0.086 (3)	0.0476 (19)	0.0160 (19)	0.0186 (17)	0.0347 (18)
02	0.145 (4)	0.131 (4)	0.076 (3)	0.097 (3)	0.052 (3)	0.063 (3)
03	0.076 (3)	0.078 (3)	0.041 (2)	0.013 (2)	-0.0026 (19)	0.0177 (19)
O4	0.074 (3)	0.065 (3)	0.067 (2)	0.018 (2)	0.006 (2)	0.025 (2)
05	0.060 (2)	0.112 (3)	0.059 (2)	0.037 (2)	0.0189 (18)	0.049 (2)
O6	0.104 (3)	0.099 (3)	0.100 (3)	0.000 (3)	0.015 (3)	0.036 (3)
07	0.106 (4)	0.137 (4)	0.093 (3)	0.016 (3)	0.036 (3)	-0.001 (3)
08	0.110 (4)	0.153 (5)	0.148 (5)	0.034 (4)	0.057 (4)	0.018 (4)
F1	0.102 (3)	0.160 (4)	0.058 (2)	0.009 (2)	0.038 (2)	0.045 (2)
F2	0.117 (3)	0.149 (4)	0.080 (2)	0.020 (3)	-0.002 (2)	0.076 (2)
C1	0.062 (3)	0.053 (3)	0.045 (3)	0.010 (3)	0.012 (3)	0.015 (2)
C2	0.062 (4)	0.056 (3)	0.048 (3)	0.008 (3)	-0.001 (3)	0.006 (3)
C3	0.049 (3)	0.043 (3)	0.077 (4)	0.003 (2)	0.004 (3)	0.015 (3)
C4	0.044 (3)	0.040 (3)	0.060 (3)	0.011 (2)	0.009 (2)	0.023 (2)
C5	0.043 (3)	0.060 (3)	0.089 (4)	0.009 (2)	0.020 (3)	0.040 (3)
C6	0.047 (3)	0.070 (4)	0.083 (4)	0.018 (3)	0.030 (3)	0.045 (3)
C7	0.046 (3)	0.052 (3)	0.058 (3)	0.024 (2)	0.024 (2)	0.033 (2)
C8	0.063 (4)	0.074 (4)	0.061 (3)	0.033 (3)	0.034 (3)	0.042 (3)
C9	0.070 (4)	0.072 (4)	0.043 (3)	0.020 (3)	0.017 (3)	0.027 (3)
C10	0.062 (3)	0.050 (3)	0.042 (3)	0.008 (2)	0.009 (2)	0.018 (2)
C11	0.042 (3)	0.039 (3)	0.049 (3)	0.016 (2)	0.015 (2)	0.028 (2)
C12	0.036 (2)	0.039 (3)	0.044 (3)	0.009 (2)	0.008 (2)	0.019 (2)
C13	0.045 (3)	0.042 (3)	0.036 (2)	0.003 (2)	0.012 (2)	0.006 (2)
C14	0.064 (3)	0.062 (3)	0.042 (3)	0.017 (3)	0.021 (3)	0.018 (2)
C15	0.067 (4)	0.086 (4)	0.057 (3)	0.023 (3)	0.019 (3)	0.034 (3)
C16	0.060 (4)	0.092 (4)	0.041 (3)	0.003 (3)	0.013 (3)	0.023 (3)
C17	0.057 (4)	0.106 (5)	0.054 (3)	0.020 (3)	0.030 (3)	0.012 (3)

C18	0.064 (4)	0.070 (4)	0.062 (3)	0.024 (3)	0.020 (3)	0.020 (3)
C19	0.050 (3)	0.051 (3)	0.045 (3)	0.009 (2)	0.013 (2)	0.013 (2)
C20	0.062 (3)	0.056 (3)	0.057 (3)	-0.007 (3)	0.011 (3)	0.023 (3)
C21	0.065 (4)	0.066 (4)	0.061 (3)	-0.005 (3)	0.012 (3)	0.015 (3)
C22	0.077 (4)	0.058 (4)	0.079 (4)	-0.017 (3)	0.034 (4)	0.005 (3)
C23	0.078 (4)	0.045 (3)	0.072 (4)	0.008 (3)	0.043 (3)	0.023 (3)
C24	0.098 (5)	0.050 (4)	0.111 (5)	0.018 (3)	0.050 (4)	0.037 (4)
C25	0.106 (5)	0.067 (4)	0.100 (5)	0.046 (4)	0.053 (4)	0.053 (4)
C26	0.076 (4)	0.070 (4)	0.060 (3)	0.037 (3)	0.033 (3)	0.035 (3)
C27	0.092 (5)	0.093 (5)	0.070 (4)	0.052 (4)	0.030 (4)	0.047 (4)
C28	0.071 (4)	0.110 (5)	0.050 (3)	0.039 (4)	0.005 (3)	0.028 (4)
C29	0.067 (4)	0.075 (4)	0.049 (3)	0.024 (3)	0.007 (3)	0.017 (3)
C30	0.059 (3)	0.056 (3)	0.040 (3)	0.026 (2)	0.026 (2)	0.024 (2)
C31	0.058 (3)	0.049 (3)	0.046 (3)	0.010 (2)	0.027 (2)	0.020 (2)
C32	0.036 (3)	0.062 (3)	0.038 (3)	0.007 (2)	0.012 (2)	0.016 (2)
C33	0.050 (3)	0.059 (3)	0.038 (3)	0.002 (2)	0.014 (2)	0.012 (2)
C34	0.060 (3)	0.071 (4)	0.061 (3)	0.012 (3)	0.017 (3)	0.036 (3)
C35	0.065 (4)	0.100 (5)	0.056 (4)	0.020 (3)	0.014 (3)	0.046 (4)
C36	0.069 (4)	0.101 (5)	0.037 (3)	0.012 (3)	0.002 (3)	0.017 (3)
C37	0.060 (3)	0.060 (3)	0.049 (3)	0.010 (3)	0.012 (3)	0.013 (3)
C38	0.040 (3)	0.071 (4)	0.045 (3)	0.008 (3)	0.009 (2)	0.021 (3)

Geometric parameters (Å, °)

Mn1—O1	2.101 (3)	С9—Н9	0.9300
Mn1—O5	2.123 (3)	C10—H10	0.9300
Mn1—N1	2.245 (4)	C11—C12	1.437 (6)
Mn1—N3	2.254 (4)	C13—C14	1.355 (6)
Mn1—N2	2.276 (3)	C13—C18	1.386 (7)
Mn1—N4	2.338 (4)	C13—C19	1.510 (6)
N1—C1	1.325 (5)	C14—C15	1.382 (6)
N1—C12	1.361 (5)	C14—H14	0.9300
N2	1.333 (5)	C15—C16	1.358 (7)
N2—C11	1.346 (5)	C15—H15	0.9300
N3—C20	1.331 (6)	C16—C17	1.338 (8)
N3—C31	1.346 (6)	C17—C18	1.394 (7)
N4—C29	1.316 (6)	С17—Н17	0.9300
N4—C30	1.362 (6)	C18—H18	0.9300
O1—C19	1.258 (5)	C20—C21	1.372 (7)
O2—C19	1.217 (6)	С20—Н20	0.9300
O3—C38	1.238 (6)	C21—C22	1.352 (8)
O4—C38	1.251 (6)	C21—H21	0.9300
O5—H5A	0.8501	C22—C23	1.401 (7)
O5—H5B	0.8499	С22—Н22	0.9300
O6—H6A	0.8500	C23—C31	1.415 (6)
O6—H6B	0.8499	C23—C24	1.416 (7)
O7—H7A	0.8501	C24—C25	1.321 (8)
O7—H7B	0.8498	C24—H24	0.9300
O8—H8A	0.8500	C25—C26	1.434 (8)

O8—H8B	0.8500	С25—Н25	0.9300
F1—C16	1.368 (5)	C26—C27	1.390 (8)
F2—C35	1.360 (6)	C26—C30	1.408 (6)
C1—C2	1.382 (7)	C27—C28	1.350 (8)
С1—Н1	0.9300	С27—Н27	0.9300
C2—C3	1.348 (7)	C28—C29	1.397 (7)
С2—Н2	0.9300	C28—H28	0.9300
C3—C4	1.400 (7)	С29—Н29	0.9300
С3—Н3	0.9300	C30—C31	1.432 (6)
C4—C12	1.410 (6)	C32—C33	1.376 (6)
C4—C5	1.425 (7)	C32—C37	1.382 (6)
C5—C6	1.337 (7)	C32—C38	1.524 (6)
С5—Н5	0.9300	C33—C34	1.379 (6)
C6—C7	1.432 (7)	С33—Н33	0.9300
С6—Н6	0.9300	C34—C35	1.353 (7)
C7—C11	1.400 (6)	С34—Н34	0.9300
С7—С8	1.406 (7)	C35—C36	1.361 (8)
C8—C9	1.350 (7)	C36—C37	1.382 (7)
C8—H8	0.9300	С36—Н36	0.9300
C9—C10	1.384 (6)	С37—Н37	0.9300
O1—Mn1—O5	87.22 (13)	C13—C14—H14	118.7
O1—Mn1—N1	92.61 (13)	C15—C14—H14	118.7
O5—Mn1—N1	110.41 (14)	C16—C15—C14	116.8 (5)
O1—Mn1—N3	102.43 (13)	С16—С15—Н15	121.6
O5—Mn1—N3	91.99 (15)	C14—C15—H15	121.6
N1—Mn1—N3	153.68 (14)	C17—C16—C15	123.7 (5)
O1—Mn1—N2	163.65 (13)	C17—C16—F1	117.8 (5)
O5—Mn1—N2	90.34 (13)	C15—C16—F1	118.5 (5)
N1—Mn1—N2	73.11 (13)	C16—C17—C18	118.7 (5)
N3—Mn1—N2	93.81 (13)	С16—С17—Н17	120.7
O1—Mn1—N4	83.87 (13)	C18—C17—H17	120.7
O5—Mn1—N4	159.63 (14)	C13—C18—C17	119.7 (5)
N1—Mn1—N4	88.31 (13)	C13-C18-H18	120.1
N3—Mn1—N4	72.22 (14)	C17—C18—H18	120.1
N2—Mn1—N4	103.18 (13)	O2—C19—O1	125.4 (5)
C1—N1—C12	118.2 (4)	O2—C19—C13	119.6 (5)
C1—N1—Mn1	126.1 (3)	O1—C19—C13	115.0 (4)
C12—N1—Mn1	115.3 (3)	N3—C20—C21	122.9 (5)
C10—N2—C11	117.4 (4)	N3—C20—H20	118.5
C10—N2—Mn1	127.5 (3)	C21—C20—H20	118.5
C11—N2—Mn1	114.9 (3)	C22—C21—C20	119.8 (5)
C20—N3—C31	118.5 (4)	C22—C21—H21	120.1
C20—N3—Mn1	124.6 (3)	C20—C21—H21	120.1
C31—N3—Mn1	116.1 (3)	C21—C22—C23	119.6 (5)
C29—N4—C30	117.1 (4)	C21—C22—H22	120.2
C29—N4—Mn1	128.8 (4)	C23—C22—H22	120.2
C30—N4—Mn1	112.7 (3)	C22—C23—C31	117.3 (5)
C19—O1—Mn1	134.6 (3)	C22—C23—C24	124.5 (5)
Mn1—O5—H5A	132.0	C31—C23—C24	118.2 (5)

Mn1—O5—H5B	116.1	C2	25—C24—C23		122.3 (6)
H5A—O5—H5B	107.2	C	25—С24—Н24		118.9
H6A—O6—H6B	111.3	C	23—С24—Н24		118.9
H7A—O7—H7B	111.7	C	24—C25—C26		121.7 (5)
H8A—O8—H8B	112.9	C	24—С25—Н25		119.2
N1—C1—C2	122.6 (5)	C	26—С25—Н25		119.2
N1—C1—H1	118.7	C	27—C26—C30		117.4 (5)
C2—C1—H1	118.7	C	27—C26—C25		124.2 (6)
C3—C2—C1	119.9 (5)	C	30—C26—C25		118.4 (5)
C3—C2—H2	120.0	C	28—C27—C26		120.0 (5)
C1—C2—H2	120.0	C	28—С27—Н27		120.0
C2—C3—C4	120.1 (5)	C	26—С27—Н27		120.0
С2—С3—Н3	119.9	C	27—C28—C29		118.8 (6)
С4—С3—Н3	119.9	C	27—С28—Н28		120.6
C3—C4—C12	116.8 (5)	C	29—С28—Н28		120.6
C3—C4—C5	124.2 (5)	N	4—C29—C28		123.9 (6)
C12—C4—C5	119.0 (4)	N	4—С29—Н29		118.0
C6—C5—C4	121.0 (5)	C	28—С29—Н29		118.0
С6—С5—Н5	119.5	N	4—C30—C26		122.6 (5)
С4—С5—Н5	119.5	N	4—C30—C31		117.9 (4)
C5—C6—C7	121.6 (5)	C	26—C30—C31		119.5 (5)
С5—С6—Н6	119.2	N.	3—C31—C23		121.8 (5)
С7—С6—Н6	119.2	N.	3—C31—C30		118.2 (4)
C11—C7—C8	116.8 (4)	C	23—C31—C30		120.0 (5)
C11—C7—C6	119.2 (4)	Cá	33—C32—C37		119.1 (4)
C8—C7—C6	123.9 (5)	Cá	33—C32—C38		120.3 (4)
C9—C8—C7	119.8 (5)	C	37—C32—C38		120.5 (5)
С9—С8—Н8	120.1	Cá	32—C33—C34		121.2 (5)
С7—С8—Н8	120.1	C	32—С33—Н33		119.4
C8—C9—C10	119.3 (5)	C	34—С33—Н33		119.4
С8—С9—Н9	120.3	Cá	35—C34—C33		117.9 (5)
С10—С9—Н9	120.3	Cá	35—С34—Н34		121.1
N2—C10—C9	123.3 (5)	C	33—С34—Н34		121.1
N2-C10-H10	118.4	C	34—C35—F2		118.5 (6)
С9—С10—Н10	118.4	C	34—C35—C36		123.2 (5)
N2	123.3 (4)	F2	2—C35—C36		118.2 (5)
N2-C11-C12	117.5 (4)	Cá	35—C36—C37		118.5 (5)
C7—C11—C12	119.1 (4)	C	35—С36—Н36		120.8
N1—C12—C4	122.3 (4)	C	37—С36—Н36		120.8
N1—C12—C11	117.7 (4)	C	36—C37—C32		120.1 (5)
C4—C12—C11	120.0 (4)	C	36—С37—Н37		120.0
C14—C13—C18	118.5 (4)	C	32—С37—Н37		120.0
C14—C13—C19	121.4 (4)	0.	3—C38—O4		126.0 (5)
C18—C13—C19	120.0 (4)	0.	3—C38—C32		116.3 (5)
C13—C14—C15	122.5 (5)	04	4—C38—C32		117.7 (4)
Hydrogen-bond geometry (Å, °)					
D—H···A	D-	—Н	H···A	$D \cdots A$	D—H··· A

O5—H5A···O3 ⁱ	0.85	1.79	2.622 (4)	166	
O5—H5B…O2	0.85	2.06	2.719 (5)	135	
O6—H6A…O4 ⁱⁱ	0.85	1.98	2.825 (6)	171	
O6—H6B····O7 ⁱⁱⁱ	0.85	2.08	2.827 (7)	146	
O7—H7A…O8	0.85	2.02	2.854 (8)	165	
O7—H7B…O6	0.85	1.99	2.819 (6)	166	
O8—H8A…O4	0.85	1.97	2.792 (7)	164	
C1—H1···F2 ^{iv}	0.93	2.50	3.209 (7)	133	
C5—H5…O3 ^v	0.93	2.45	3.339 (7)	160	
C20—H20····O4 ⁱ	0.93	2.42	3.233 (7)	146	
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) $-x+1$, $-y$, $-z$; (iii) $-x+2$, $-y$, $-z$; (iv) $-x$, $-y+1$, $-z$; (v) $x-1$, y , z .					

Fig. 2